NOVEL ANTIBIOTICS, FURAQUINOCINS C, D, E, F, G AND H

Masami Ishibashi[†], Shinji Funayama^{††}, Yumi Anraku, Kanki Komiyama and Satoshi Ōmura*

The Kitasato Institute, and School of Pharmaceutical Sciences of Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108, Japan

(Received for publication October 31, 1990)

Furaquinocins C, D, E, F, G and H, congeners of furaquinocins A and B, were isolated from the culture broth of *Streptomyces* sp. KO-3988 and their structures have been determined on the basis of their spectroscopical and chemical properties. These antibiotics showed cytocidal activities against HeLa S3 and B16 melanoma cells *in vitro*.

In the preceding paper,¹⁾ we reported the production, isolation, physico-chemical properties and biological activities of furaquinocins A (1) and B (2), together with the taxonomy of the producing organism, *Streptomyces* sp. KO-3988. Structural elucidation and biosynthetic studies on furaquinocins A (1) and B (2) have also been described.^{2,3)} Through careful fractionation of the fermentation broth from which 1 and 2 were isolated, six other compounds, designated as furaquinocins $C \sim H$ ($3 \sim 8$), were obtained. This paper deals with the isolation and structural elucidation of furaquinocins $C \sim H$ ($3 \sim 8$).

Isolation of Furaquinocins $C \sim H$

The isolation, characterization, and structural elucidation of furaquinocins A (1) and B (2) were described in the preceding papers.^{1,2)} The same fermentation procedure employed for 1 and 2 was used for the production of furaquinocins $C \sim H$ (3~8). Separation of furaquinocins $C \sim H$ (3~8) was performed

Present address: [†] Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan. ^{††} Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980, Japan.

THE JOURNAL OF ANTIBIOTICS

by repeated silica gel column chromatographies along with gel filtration on Sephadex LH-20. Preparative HPLC on ODS column was used to obtain furaquinocins E (5), F (6), and G (7). The details on the isolation procedure were described in the Experimental Section. Rf values on TLC of furaquinocin A~H $(1 \sim 8)$ are given in Table 1.

Physico-chemical Properties of Furaquinocins C~H

The physico-chemical properties of furaquinocins $C \sim H$ (3~8) are summarized in Table 2. The UV and IR spectra of these compounds were quite similar and suggested that the chromophore of naphtho[1,2b]furan-6,9-dione, which was present in the structures of furaquinocins A (1) and B (2), was also common to all these compounds. HR mass spectra revealed all of furaquinocins $C \sim H(3 \sim 8)$ possessed 22 carbons and ¹H and ¹³ C NMR spectra, presented in Tables 3 and 4, respectively, indicated that the structural difference among these compounds lies in the part of the isoprenoid side chain.

Table 1. Chromatographic behavior of furaquinocins $A \sim H$ (1~8) on TLC (Kieselgel 60 F_{254} DC-fertigplatten, Merck).

Solvent system	Rf value							
Solvent system	1	2	3	4	5	6	7	8
CHCl ₃ - MeOH (19:1)	0.48	0.31	0.96	0.96	0.42	0.49	0.90	0.16
Benzene - acetone (2:1)	0.53	0.40	0.91	0.88	0.58	0.58	0.75	0.12

	3	4	5
Appearance	Yellow needle	Yellow powder	Yellow powder
MP (°C)	213~215	177~179	184~186
Optical rotation	$[\alpha]_{\rm D}^{19} - 38^{\circ}$	$[\alpha]_{\rm D}^{19} - 95^{\circ}$	$[\alpha]_{\rm D}^{18} - 79^{\circ}$
	(c 0.55, CHCl ₃)	(c 0.53, CHCl ₃)	(c 0.26, MeOH)
UV $\lambda_{\rm max}^{\rm MeOH}$ nm	221, 267, 298, 406	221, 267, 292, 402	215, 240 (sh), 265, 296, 400
IR v_{max} (KBr) cm ⁻¹	3260, 1655, 1615, 1555,	3350, 1660, 1630, 1575,	3400, 1665, 1630, 1570,
	1390, 1280, 1195	1400, 1275, 1160	1440, 1295, 1200
MW	370	386	384
Molecular formula	$C_{22}H_{26}O_5$	$C_{22}H_{26}O_{6}$	$C_{22}H_{24}O_{6}$
EI-MS (m/z)	370 (M ⁺), 287, 273, 259	386 (M ⁺), 287, 273, 259	384 (M ⁺), 351, 327, 299
HR-MS Calcd (m/z) :	370.1781	386.1729	384.1573
Found:	370.1795	386.1737	384.1588
	6	7	8
Appearance	6 Yellow powder	7 Yellow powder	8 Yellow powder
Appearance MP (°C)	6 Yellow powder 115~118	7 Yellow powder 121~124	8 Yellow powder 75~78
Appearance MP (°C) Optical rotation	6 Yellow powder $115 \sim 118$ $[\alpha]_{18}^{18} - 13^{\circ}$	7 Yellow powder 121~124 [α] ¹⁹ + 12°	8 Yellow powder $75 \sim 78$ $[\alpha]_{19}^{19} + 52^{\circ}$
Appearance MP (°C) Optical rotation	6 Yellow powder $115 \sim 118$ $[\alpha]_{18}^{18} - 13^{\circ}$ (c 0.35, MeOH)	7 Yellow powder $121 \sim 124$ $[\alpha]_{19}^{19} + 12^{\circ}$ (c 0.33, MeOH)	8 Yellow powder $75 \sim 78$ $[\alpha]_{19}^{19} + 52^{\circ}$ (c 0.25, MeOH)
Appearance MP (°C) Optical rotation UV λ_{max}^{MeOH} nm	6 Yellow powder $115 \sim 118$ $[\alpha]_{1^8}^{18} - 13^{\circ}$ (c 0.35, MeOH) 218, 266, 294, 400	7 Yellow powder 121 ~ 124 $[\alpha]_{1^9}^{19}$ + 12° (c 0.33, MeOH) 219, 266, 297, 406	8 Yellow powder 75~78 [α] ¹⁹ + 52° (c 0.25, MeOH) 220, 268, 290, 405
Appearance MP (°C) Optical rotation UV λ_{max}^{MeOH} nm IR v_{max} (KBr) cm ⁻¹	6 Yellow powder $115 \sim 118$ $[\alpha]_{1^8}^{18} - 13^{\circ}$ (c 0.35, MeOH) 218, 266, 294, 400 3400, 1660, 1635, 1575,	7 Yellow powder $121 \sim 124$ $[\alpha]_{1^9}^{19} + 12^{\circ}$ (c 0.33, MeOH) 219, 266, 297, 406 3350, 1660, 1635, 1580,	8 Yellow powder 75~78 [α] ¹⁹ + 52° (c 0.25, MeOH) 220, 268, 290, 405 3350, 1660, 1630, 1575,
Appearance MP (°C) Optical rotation UV λ_{max}^{MeOH} nm IR v_{max} (KBr) cm ⁻¹	6 Yellow powder $115 \sim 118$ $[\alpha]_{1^8}^{18} - 13^{\circ}$ (c 0.35, MeOH) 218, 266, 294, 400 3400, 1660, 1635, 1575, 1440, 1290, 1195	7 Yellow powder $121 \sim 124$ $[\alpha]_{19}^{19} + 12^{\circ}$ (c 0.33, MeOH) 219, 266, 297, 406 3350, 1660, 1635, 1580, 1400, 1285, 1165	8 Yellow powder $75 \sim 78$ $[\alpha]_{19}^{19} + 52^{\circ}$ (c 0.25, MeOH) 220, 268, 290, 405 3350, 1660, 1630, 1575, 1400, 1290, 1165
Appearance MP (°C) Optical rotation UV λ_{max}^{MeOH} nm IR v_{max} (KBr) cm ⁻¹ MW	6 Yellow powder $115 \sim 118$ $[\alpha]_{1^8}^{18} - 13^{\circ}$ (c 0.35, MeOH) 218, 266, 294, 400 3400, 1660, 1635, 1575, 1440, 1290, 1195 386	7 Yellow powder $121 \sim 124$ $[\alpha]_{19}^{19} + 12^{\circ}$ (c 0.33, MeOH) 219, 266, 297, 406 3350, 1660, 1635, 1580, 1400, 1285, 1165 400	8 Yellow powder $75 \sim 78$ $[\alpha]_{19}^{19} + 52^{\circ}$ (c 0.25, MeOH) 220, 268, 290, 405 3350, 1660, 1630, 1575, 1400, 1290, 1165 418
Appearance MP (°C) Optical rotation UV λ_{max}^{MeOH} nm IR v_{max} (KBr) cm ⁻¹ MW Molecular formula	6 Yellow powder $115 \sim 118$ $[\alpha]_{1^8}^{18} - 13^{\circ}$ (c 0.35, MeOH) 218, 266, 294, 400 3400, 1660, 1635, 1575, 1440, 1290, 1195 386 $C_{22}H_{26}O_6$	7 Yellow powder $121 \sim 124$ $[\alpha]_{19}^{19} + 12^{\circ}$ (c 0.33, MeOH) 219, 266, 297, 406 3350, 1660, 1635, 1580, 1400, 1285, 1165 400 $C_{22}H_{24}O_7$	8 Yellow powder $75 \sim 78$ $[\alpha]_{19}^{19} + 52^{\circ}$ (c 0.25, MeOH) 220, 268, 290, 405 3350, 1660, 1630, 1575, 1400, 1290, 1165 418 $C_{22}H_{26}O_8$
Appearance MP (°C) Optical rotation UV λ_{max}^{MeOH} nm IR v_{max} (KBr) cm ⁻¹ MW Molecular formula EI-MS (<i>m</i> / <i>z</i>)	6 Yellow powder $115 \sim 118$ $[\alpha]_{1^8}^{18} - 13^{\circ}$ (c 0.35, MeOH) 218, 266, 294, 400 3400, 1660, 1635, 1575, 1440, 1290, 1195 386 $C_{22}H_{26}O_6$ 386 (M ⁺), 287, 273, 259	7 Yellow powder $121 \sim 124$ $[\alpha]_D^{19} + 12^{\circ}$ (c 0.33, MeOH) 219, 266, 297, 406 3350, 1660, 1635, 1580, 1400, 1285, 1165 400 C ₂₂ H ₂₄ O ₇ 400 (M ⁺), 382, 299, 287	8 Yellow powder $75 \sim 78$ $[\alpha]_D^{19} + 52^{\circ}$ (c 0.25, MeOH) 220, 268, 290, 405 3350, 1660, 1630, 1575, 1400, 1290, 1165 418 $C_{22}H_{26}O_8$ 420 (M+2) ⁺ , ^a 402, 287, 273
Appearance MP (°C) Optical rotation UV λ_{max}^{MeOH} nm IR v_{max} (KBr) cm ⁻¹ MW Molecular formula EI-MS (<i>m</i> / <i>z</i>) HR-MS Calcd (<i>m</i> / <i>z</i>):	6 Yellow powder $115 \sim 118$ $[\alpha]_{1^8}^{1^8} - 13^{\circ}$ (c 0.35, MeOH) 218, 266, 294, 400 3400, 1660, 1635, 1575, 1440, 1290, 1195 386 $C_{22}H_{26}O_6$ 386 (M ⁺), 287, 273, 259 386.1729	7 Yellow powder $121 \sim 124$ $[\alpha]_D^{19} + 12^{\circ}$ (c 0.33, MeOH) 219, 266, 297, 406 3350, 1660, 1635, 1580, 1400, 1285, 1165 400 C ₂₂ H ₂₄ O ₇ 400 (M ⁺), 382, 299, 287 400.1522	8 Yellow powder $75 \sim 78$ $[\alpha]_{19}^{19} + 52^{\circ}$ (c 0.25, MeOH) 220, 268, 290, 405 3350, 1660, 1630, 1575, 1400, 1290, 1165 418 $C_{22}H_{26}O_8$ 420 (M+2) ⁺ , ^a 402, 287, 273 420.1784

Table 2. Physico-chemical properties of furaquinocins $C \sim H$ (3~8).

^a Instead of the molecular ion, the (M+2) ion was predominantly observed.²⁾

Position	1 ^a	2ª	3ª	4 ^a
2	4.67 q	4.69 q	4.55 q	4.67 q
2-CH ₃	1.30 d	1.32 d	1.51 d	1.30 d
3-CH ₃	1.31 s	1.37 s	1.47 s	1.34 s
5	7.12 s	7.15 s	7.32 s	7.14 s
7-OCH ₃	3.98 s	4.00 s	3.99 s	3.98 s
8-CH ₃	2.03 s	2.04 s	2.08 s	2.03 s
10	3.95 dd	4.07 dd	1.95 m (2H)	4.01 dd
11	2.61 ddd, 2.13 dt	2.57 dt, 2.19 ddd	1.80 m (2H)	2.48 dt, 2.15 ddd
12	5.50 m	5.52 m	4.98 m	5.17 m
14	1.86 br s (3H)	4.09 s (2H)	1.60 br s (3H)	1.76 br s (3H)
15	4.00 d, 4.41 d	1.74 br s (3H)	1.48 br s (3H)	1.69 br s (3H)
Position	5 ⁵	6 ⁶	7 ª	8°
2	4.57 q	4.49 q	4.65 g	4.61 g
2-CH ₃	1.36 d	1.51 d	1.35 d	1.33 d
3-CH ₃	1.58 s	1.46 s	1.34 s	1.32 s
5	7.07 -	207.	7.14	7 0 7
5	7.07 S	7.07 s	/.16 s	7.07 s
7-OCH ₃	3.99 s	3.99 s	7.16 s 4.00 s	7.07 s 3.93 s
7-OCH ₃ 8-CH ₃	3.99 s 1.99 s	7.07 s 3.99 s 1.99 s	7.16 s 4.00 s 2.04 s	7.07 s 3.93 s 1.99 s
7-OCH ₃ 8-CH ₃ 10	3.99 s 1.99 s 6.06 m	7.07 s 3.99 s 1.99 s na	7.16 s 4.00 s 2.04 s 4.39 dd	7.07 s 3.93 s 1.99 s 3.91 d
7-OCH ₃ 8-CH ₃ 10 11	3.99 s 1.99 s 6.06 m 5.60 m	7.07 s 3.99 s 1.99 s na na	7.16 s 4.00 s 2.04 s 4.39 dd 2.43 m, 2.00 m	7.07 s 3.93 s 1.99 s 3.91 d 2.56 m, 2.19 m
7-OCH ₃ 8-CH ₃ 10 11 12	3.99 s 1.99 s 6.06 m 5.60 m 6.06 m	7.07 s 3.99 s 1.99 s na na 5.27 m	7.16 s 4.00 s 2.04 s 4.39 dd 2.43 m, 2.00 m 5.70 br dd	7.07 s 3.93 s 1.99 s 3.91 d 2.56 m, 2.19 m 5.61 dd
7-OCH ₃ 8-CH ₃ 10 11 12 14	7.07 s 3.99 s 1.99 s 6.06 m 5.60 m 6.06 m 3.94 s (2H)	7.07 s 3.99 s 1.99 s na na 5.27 m 3.81 s (2H)	7.16 s 4.00 s 2.04 s 4.39 dd 2.43 m, 2.00 m 5.70 br dd 5.44 s	7.07 s 3.93 s 1.99 s 3.91 d 2.56 m, 2.19 m 5.61 dd 4.10 d, 4.05 d

Table 3. ¹H NMR spectra (δ ppm) of furaquinocins A ~ H (1~8).

^a In CDCl₃. ^b in CD₃OD. ^c in CDCl₃-CD₃OD (3:1).

na: Not assigned.

Table 4.	¹³ C NMR spectra (δ ppm) of furaquinocins A~H (1~8).

Position	1ª	2 ^a	3ª	4 ^a	5 ⁶	6 ^b	7 ª	8 °
2	88.9 d	88.9 d	91.7 d	88.9 d	93.4 d	93.0 d	89.1 d	90.3 d
2-CH ₃	16.1 q	16.1 q	13.6 q	16.0 q	15.8 q	13.9 q	16.2 q	16.1 q
3	52.8 s	52.4 s	46.6 s	52.3 s	50.5 s	48.0 s	51.4 s	53.3 s
3-CH ₃	18.9 q	18.9 q	22.7 q	18.9 q	22.8 q	23.6 q	19.3 q	19.6 q
3a	124.6 s	124.5 s	127.9 s	124.6 s	127.7 s	128.7 s	124.9 s	125.4 s
4	158.9 s	158.4 s	158.0 s	158.5 s	161.0 s	161.1 s	158.2 s	159.6 s
5	111.0 d	110.7 d	109.6 d	110.8 d	110.2 d	110.1 d	110.4 d	111.0 d
5a	134.0 s	134.1 s	133.1 s	134.0 s	135.3 s	135.0 s	133.7 s	134.4 s
6	180.8 s	180.7 s	181.3 s	180.7 s	182.3 s	182.3 s	180.8 s	181.6 s
7	156.9 s	156.9 s	157.0 s	156.9 s	158.7 s	158.8 s	156.9 s	157.6 s
7-OCH ₃	60.6 q	60.7 q	60.7 q	60.6 q	61.4 q	61.4 q	60.7 q	61.1 q
8	133.6 s	133.7 s	134.1 s	133.6 s	134.1 s	134.1 s	132.0 s	134.3 s
8-CH ₃	9.3 q	9.3 q	9.4 q	9.3 q	9.6 q	9.6 q	9.3 q	9.7 q
9	183.8 s	183.7 s	184.2 s	183.7 s	185.6 s	185.8 s	183.7 s	184.6 s
9a	108.8 s	109.2 s	109.3 s	109.1 s	109.8 s	114.0 s	109.3 s	109.2 s
9b	160.6 s	160.4 s	161.6 s	160.5 s	162.8 s	162.9 s	160.4 s	161.6 s
10	71.4 d	73.0 d	23.8 t	73.1 d	134.3 d	24.9 t	68.5 d	72.8 d
11	32.4 t	31.9 t	35.0 t	32.1 t	127.8 d	36.0 t	26.1 t	32.2 t
12	124.9 d	120.1 d	124.1 d	118.7 d	125.6 d	126.8 d	122.2 d	126.4 d
13	138.3 s	140.0 s	131.6 s	138.2 s	138.5 s	136.2 s	134.0 s	141.6 s
14	23.2 q	68.0 t	25.6 q	26.0 q	68.7 t	69.2 t	92.8 d	65.7 t
15	61.4 t	14.3 q	17.6 q	18.2 q	14.4 q	14.1 q	18.8 q	58.2 t

In $CDCl_3$. ^b in CD_3OD . ^c in $CDCl_3 - CD_3OD$ (3:1).

Sturucture Elucidation of Furaquinocins C~H

Furaquinocin C (3) was shown to have the molecular formula $C_{22}H_{26}O_5$ by HREI-MS, indicating that furaquinocin C (3) lacks two oxygen atoms from those $(C_{22}H_{26}O_7)$ of furaquinocin A (1) or B (2). ¹H and ¹³C NMR data (Tables 3 and 4) as well as the characteristic EI-MS ion at m/z 287 (M⁺-side chain $(C-10 \sim C-15))^{2}$ revealed the structure of naphtoquinone nucleus was the same as that of 1 or 2. Since furaquinocin A (1) or B (2) possesses two oxygen atoms on the side chain, furaquinocin C (3) was inferred to possess no oxygen atom in the side chain part. ¹H and ¹³C NMR spectra revealed the presence of two methylene, one sp^2 methine, one quarternary sp^2 carbon, and two olefinic methyls for the C-10 ~C-15 moiety and the ¹H-¹H COSY spectrum showed the 4-methyl-3-pentenyl group for the structure of this part.

Furaquinocin D (4), $C_{22}H_{26}O_6$, possessed one more oxygen atom than furaquinocin C (3). The position of the oxygen was deduced to be at C-10 by the ¹H and ¹³C NMR data (δ_H 4.01, dd, J=9.5 and 2 Hz; δ_C 73.1, d), leading to 1-hydroxy-4-methyl-3-pentenyl group for the structure of the side chain. Other spectral data were also consistent with structure 4 for furaquinocin D.

The molecular formula of furaquinocin E (5), $C_{22}H_{24}O_6$, implied that 5 lacks one water molecule from furaquinocin A (1) or B (2). The presence of the terminal olefinic methyl (δ_c 14.4, q) and hydroxymethyl (δ_c 68.7, t) was shown by ¹³C NMR spectrum and those ¹³C chemical shifts indicated *E*-configuration of the $\Delta^{12,13}$ -double bond.²⁾ For C-10 and C-11, two sp^2 methine carbons (δ_c 127.8, d and 134.3, d) were observed, indicating the side chain structure to be 5-hydroxy-4-methyl-1,3-pentadienyl group. In the UV spectrum of 5, a shoulder was observed at 240 nm due to the diene. Although the ¹H signals for 10-H ~ 12-H of 5 were heavily overlapped, those signal in the ¹H NMR of the diacetate (9) were well resolved to indicate 10*E*-configuration by the coupling constant ($J_{10,11} = 14.5$ Hz).

Furaquinocin F (6), $C_{22}H_{26}O_6$, possessed the same molecular formula as furaquinocin D (4). The structural difference between 4 and 6 was the position of the hydroxyl group in the side chain. The ¹H and ¹³C NMR of 6 showed the presence of two methylene (δ_c 24.9, t and 36.0, t), one hydroxymethyl (δ_c 69.2, t), and one olefinic methyl group (δ_c 14.1, q), giving rise to 5-hydroxy-4-methyl-3-pentenyl group for the side chain structure. The ¹³C chemical shifts for the terminal methyl and hydroxymethyl groups implied 12*E*-configuration.²⁾

Furaquinocin G (7) possessed the molecular formula, $C_{22}H_{24}O_7$, which suggested that 7 lacks one hydrogen molecule from furaquinocin A (1) or B (2). Compound 7 also possessed the same naphtho-[1,2b]furan-6,9-dione nucleus and the structural difference was expected to be found only in the side chain. ¹³C NMR revealed, for the side chain, the presence of one oxymethine (δ_c 68.5, d), one methylene (δ_c 26.1, t), one sp^2 methine (δ_c 122.2, d), one sp^2 quarternary carbon (δ_c 134.0, s), one olefinic methyl (δ_c 18.8, q), and one hemiacetal carbon (δ_c 92.8, d). A hemiacetal proton signal appeared at δ_H 5.44, s. These observations along with the ¹H-¹H and ¹H-¹³C COSY spectra allowed to assign the structure of the side chain to be 1,5-epoxy-5-hydroxy-4-methyl-3-pentenyl group.

Furaquinocin H (8) possessed the molecular formula, $C_{22}H_{26}O_8$, having one more oxygen atom than furaquinocin A (1) or B (2). The ¹H and ¹³C NMR spectra revealed the presence of two hydroxymethyl groups and the absence of the terminal olefinic methyl group in the side chain. For other part of the molecule, 8 gave very similar ¹H and ¹³C NMR results to those of furaquinocin A (1) or B (2). These observations showed the structure of the C-10~C-15 part of 8 to be 1,5-dihydroxy-4-hydroxymethyl-3-pentenyl group.

From all of the observations described above, the structures of furaquinocins $C \sim H$ were concluded to be $3 \sim 8$, respectively. Cytocidal activities (IC₅₀ value, $\mu g/ml$) of furaquinocins $A \sim H$ against B16 melanoma cells and HeLa S3 cells are shown in Table 5. Among these compounds, furaquinocin H (8) possessed the most potent cytocidal activity against both cell lines.

Table 5.	$1C_{50}$ value of furaquinocitis (µg/mi).					
	B16	HeLa S3				
A (1)	> 19.9	>21.9				
B (2)	5.58	1.33				
C (3)	0.63	1.22				
D (4)	6.87	5.05				
E (5)	2.56	1.30				
F (6)	>25	>25				
G (7)	1.88	0.92				
H (8)	0.08	0.22				

Experimental

General Procedures

MP's were determined using a Yanagimoto MP-3 hot stage microscope and are uncorrected. Optical rotations were measured with a Jasco DIP-181 polarimeter. IR spectra were recorded on a Jasco A-102 spectrophotometer and UV spectra were measured with a Shimadzu UV 200S double beam spectrophotometer. ¹H and ¹³C NMR spectra were obtained on a Varian XL-400 spectrometer and mass spectra were recorded on a Jeol JMS DX 300 or JMA 3100 spectrometer. Kieselgel 60 F_{254} DC-fertigplatten (Merck) was used for TLC analyses, and Kieselgel 60 (Merck) was used for silica gel column chromatographies. TRI Rotar-V (Jasco) and UVIDEC-100 (Jasco) instruments were used for HPLC with a column of YMC D-ODS-5 (Yamamura Chemical Lab., 2.2 × 27 cm; eluant: MeOH - H₂O (70:30); flow rate: 9.0 ml/minute; detection: UV at 254 or 300 nm).

Isolation of Furaquinocins

The fermentation of *Streptomyces* sp. KO-3988 was carried out by the same conditions previously described.¹⁾ The fermentation broth (300 liters) was extracted with EtOAc (180 liters) and the EtOAc layer was concentrated *in vacuo* to about 5 liters and dried over anhydrous Na_2SO_4 . Concentration of the EtOAc layer gave a brown oil (445 g).

The brown oil (445 g) was subjected to a silica gel column chromatography (9 × 25 cm; column I) eluted successively with 6 liters of CHCl₃, 6 liters of CHCl₃ - MeOH (9:1), and 3 liters of CHCl₃ - MeOH (1:1). The fraction eluting from 6 to 9 liters (fraction 3, 43 g) was separated by a silica gel column (5.0×32 cm; column II) eluted with benzene-ethyl acetate (1:1, 1.4 liters and 1:2, 0.6 liter) to give furaquinocin A (1, 2.3 g) in the 1,020 ~ 1,540 ml fraction. The 120 ~ 340 ml fraction of column II (25 g) was further purified with a silica gel column (3.3×42 cm; column III) eluted with benzene - ethyl acetate (9:1, 1 liter and 4:1, 0.5 liter). The 240 ~ 560 ml fraction of column III (11 g) was separated again by a silica gel column (5.0×36 cm; column IV) eluted with hexane - ethyl acetate (2:1). The fraction eluting from 180 to 460 ml (5.2 g) of column IV contained mainly piericidine A₁,⁴ and the 460 ~ 800 ml fraction (3.2 g) was recrystallized from hexane - ethyl acetate (2:1) to afford furaquinocin C (3, 540 mg). The 660 ~ 1,100 ml fraction of column III (8 g) was purified with a Sephadex LH-20 column chromatography (3.1×53 cm; column V) and the 135 ~ 255 ml fraction of column V (6 g) was further separated by a silica gel column (3.3×50 cm; column VI) eluted with chloroform - ethyl acetate (9:1) to give furaquinocin D (4, 2.2 g) in the 180 ~ 525 ml fraction together with antimycin complex⁵(1.8 g) in the 525 ~ 1,050 ml fraction.

The $500 \sim 920$ ml fraction of column II (2.4 g) was separated by a Sephadex LH-20 column (3.1 × 53 cm; column VII) eluted with chloroform - methanol (1:1) and the $100 \sim 150$ ml fraction of column VII (1.6 g) was further purified with a silica gel column chromatography (3.1 × 53 cm; column VIII) eluted with chloroform - ethyl acetate (4:1, 1 liter and 3:2, 1 liter). The 690 ~ 810 ml fraction of column VIII (163 mg) was then separated by a silica gel column (2.2 × 40 cm; column IX) eluted with hexane - acetone (2:1). The 90 ~ 150 ml fraction of column IX (36 mg) was subjected to HPLC separation to give furaquinocin G (7, 8.0 mg, Rt 25.0 minutes). The 900 ~ 1,125 ml fraction of column VIII (246 mg) was also subjected to HPLC separation to afford furaquinocin E (5, 30.5 mg, Rt 22.1 minutes) and furaquinocin F (6, 16.7 mg, Rt 26.0 minutes).

VOL. 44 NO. 4

THE JOURNAL OF ANTIBIOTICS

On the other hand, the fraction of column I eluting from 9 to 12 liters (fraction 4, 17 g) was separated by a silica gel column chromatography $(4.5 \times 25 \text{ cm}; \text{ column X})$ eluted with chlorofrom - methanol (19:1). The $675 \sim 945 \text{ ml}$ fraction of column IX (7 g) was then purified with a silica gel column chromatography $(4.5 \times 32 \text{ cm}; \text{ column XI})$ eluted with benzene - ethyl acetate (1:2) to afford furaquinocin B (2, 2.7 g) in the $1,180 \sim 2,400 \text{ ml}$ fraction. The $800 \sim 1,080 \text{ ml}$ fraction of column XI was further separated with a Sephadex LH-20 column ($1.7 \times 128 \text{ cm};$ column XII) eluted with 100% methanol to give furaquinocin A (1, 0.9 g) in the $152 \sim 208 \text{ ml}$ fraction.

The 945~1,380 ml fraction of column X (5.9 g) was separated with a Sephadex LH-20 column (2.4×50 cm; column XIII) eluted with 100% methanol. The 130~300 ml fraction of column XIII (1.8 g) was then purified with a silica gel column chromatography (2.4×50 cm; column XIV) eluted with chloroform - methanol (9:1). The 315~465 ml fraction of column XIV (460 mg) was further separated by a silica gel column (2.2×43 cm) eluted with benzene - acetone (2:3) to give furaquinocin H (8, 50 mg) in the 210~315 ml fraction.

Furaquinocin E Acetate (9)

Furaquinocin E (5, 29 mg, crude sample) was treated with acetic anhydride (0.5 ml) and pyridine (0.5 ml) at room temperature for 23 hours. After evaporation of the solvent, the residue was purified with a gel column chromatography (1.5×20 cm) eluted with hexane - ethyl acetate (2:1) to afford the diacetate (9, 5 mg): ¹H NMR (CDCl₃) δ 1.40 (3H, d, J=6.5 Hz, 2-CH₃), 1.53 (3H, s, 3-CH₃), 1.70 (3H, s, 15-H₃), 2.08 (3H, s, 8-CH₃), 2.22 (3H, s, Ac), 2.27 (3H, s, Ac), 4.05 (3H, s, 7-OCH₃), 4.49 (2H, s, 14-H₂), 4.70 (1H, q, J=6.5 Hz, 2-H), 5.66 (1H, d, J=14.5 Hz, 10-H), 6.03 (1H, d, J=11 Hz, 12-H), 6.09 (1H, dd, J=14.5 and 11 Hz, 11-H), and 7.39 (1H, s, 5-H); EI-MS m/z 468 (M⁺), 426, 408, 383, 365, and 287.

Cytocidal Activity Test of 1~8 against B16 Melanoma and HeLa S3 Cells

B16 melanoma and HeLa S3 cells were maintained in monolayers in EAGLE's minimum essential medium supplemented with 10% bovine serum and kanamycin (60 μ g/ml) at 37°C. To determine the cytotoxicity of $1 \sim 8$, 5×10^3 of B16 melanoma cells or HeLa S3 cells in a medium (0.2 ml) were plated into 96-well culture plate (Falcon). One day after the cultivation at 37°C in a 5% CO₂/95% air atmosphere, to each culture was added 5μ l of the MeOH solution of a different concentration of $1 \sim 8$, and they were reincubated. After further 3 days of incubation, the cell growth was evaluated by the method of MIRABELLI *et al.*⁶

References

- KOMIYAMA, K.; S. FUNAYAMA, Y. ANRAKU, M. ISHIBASHI, Y. TAKAHASHI & S. OMURA: Novel antibiotics, furaquinocins A and B. Taxonomy, fermentation, isolation and physico-chemical and biological characteristics. J. Antibiotics 43: 247~252, 1990
- FUNAYAMA, S.; M. ISHIBASHI, Y. ANRAKU, K. KOMIYAMA & S. OMURA: Structures of novel antibiotics, furaquinocins A and B. Tetrahedron Lett. 30: 7427 ~ 7430, 1989
- FUNAYAMA, S.; M. ISHIBASHI, K. KOMIYAMA & S. OMURA: Biosynthesis of furaquinocins A and B. J. Org. Chem. 55: 1132~1133, 1990
- YOSHIDA, S.; K. YONEYAMA, S. SHIRAISHI, A. WATANABE & N. TAKAHASHI: Chemical structures of new piericidins produced by *Streptomyces pactum*. Agric. Biol. Chem. 41: 855~862, 1977
- VAN TAMELEN, E. E.; J. P. DICKIE, M. E. LOOMANS, R. S. DEWEY & F. M. STRONG: The chemistry of antimycin A. X. Structure of the antimycins. J. Am. Chem. Soc. 83: 1639~1646, 1961
- 6) MIRABELLI, C. K.; H. BARTUS, J. O. L. BARTUS, R. JOHNSON, S. M. MONG, C. P. SUNG & S. T. CROOKE: Application of a tissue culture microtiter test for the detection of cytotoxic agants from natural products. J. Antibiotics 38: 758~766, 1985